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81031 Aversa (CE), Italy

Received 23 April 2008, in final form 15 May 2008
Published 6 November 2008
Online at stacks.iop.org/JPhysCM/20/474214

Abstract
We propose an all-electrical nanoscopic structure where a pure spin current is induced in the
transverse probes attached to a quantum-coherent ballistic quasi-one-dimensional ring when
conventional unpolarized charge current is injected through its longitudinal leads. The study is
essentially based on the spin–orbit coupling (SOC) arising from the laterally confining electric
field (β-SOC). This sets the basic difference with other works employing mesoscopic rings with
the conventional Rashba SO term (α-SOC). The β-SOC ring generates oscillations of the
predicted spin Hall current due to spin-sensitive quantum-interference effects caused by the
difference in phase acquired by opposite spins states traveling clockwise and counterclockwise.
We focus on single-channel transport and solve analytically the spin polarization of the current.
We relate the presence of a polarized spin current with the peaks in the longitudinal
conductance.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Conventional electronic devices rely on the transport of
electrical charge carriers—electrons—in a semiconductor.
Now physicists are trying to exploit the ‘spin’ of the electron
rather than its charge, in order to create a remarkable new
generation of ‘spintronic’ devices [1, 2]. Current efforts in
spintronics are directed towards gaining control of the electron
spin in submicrometric devices. Thus, some fundamental
quantum phenomena that involve electron spin have arisen,
in order to generate and measure pure spin currents. These
currents emerge when an equal number of spin-↑ and spin-↓
electrons move in opposite directions, so that the net charge
current is zero [3].

The so called spin Hall effect (SHE) has been extensively
investigated in recent years, in order to obtain a pure spin
current. The classic Hall effect occurs when an electric
current flows through a conductor subjected to a perpendicular
magnetic field. In this case the Lorentz force deflects the
electrons and charge builds up on one side of the conductor,
resulting in an observable Hall voltage [4]. In the absence
of an external magnetic field, some esoteric Hall-type effects
involving electron spin become possible in systems with spin–
orbit (SO) interactions, such as the SHE [5, 6]. In these

systems, as an extension of Ehrenfest’s theorem in quantum
mechanics, the SO coupling may generate a spin-dependent
transverse force on moving electrons [7]. This force tends
to separate different spins in the transverse direction as a
response to the longitudinal charge current, giving a qualitative
explanation for the SHE.

Thus, the SO coupling plays a central role in the SHE
phenomenology and its properties were largely investigated
in two-dimensional electron systems (2DESs). In the case
of quantum heterostructures of narrow gap semiconductors,
a major contribution to the SO coupling may originate
intrinsically from the asymmetry in the quantum well potential
that confines the electron gas in a 2D plane (Rashba or α-
SO coupling) [9]. However, in quasi-one-dimensional (Q1D)
devices patterned in a 2DES, such as quantum wires, a
confining SO coupling (β-coupling) arises from the in-plane
electric potential that is applied to squeeze the 2DES into a
Q1D channel [10, 11].

In some recent papers [12–14] the SHE like phenomenol-
ogy due to the β coupling was discussed, and it was shown that
the SOC could give stronger effects than the α one. In some
devices, such as Q1D wires [12], the effect of the β-SO term
is analogous to the one of a uniform effective magnetic field,
Beff, orthogonal to the 2DES (x–y plane) directed upwards or
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Figure 1. The mesoscopic circuit serving as a generator of the pure
(I2 = I ↑

2 + I ↓
2 = 0) spin Hall current I s

2 = h̄
2e (I ↑

2 − I ↓
2 ) = −I s

4 in the
transverse voltage probes (V2 = V4 �= 0, I2 = I4 = 0) attached to a
ring realized using a 2DEG in a semiconductor heterostructure [8].
The injected unpolarized (I s

1 = 0) current through (single-channel)
longitudinal leads is subjected to the β SO interaction (nonvanishing
in the shaded ring region), which acts as a field Beff arising due to the
electric field Ec confining the electrons in a quasi-one-dimensional
(Q1D) ring. The angle ϕ, the coordinate in the ring’s regions,
vanishes at the intersection with lead 1, whereas it takes the value
ϕ = π/2 at the intersection with lead 2, and so on.

downwards according to the spin polarization along the z direc-
tion. Thus, the SOC exerts a spin-dependent transverse force
on moving electrons, while conserving their spins.

In this paper we focus on the aspects of spin interference
in ballistic Q1D ring geometries with four leads subject
to β-SO coupling (see figure 1). In fact, ring conductors
smaller than the dephasing length Lφ � 1 μm (at low
temperature T � 1 K) have played an essential role in
observing how coherent superpositions of quantum states
(i.e., quantum-interference effects) on a mesoscopic scale
leave an imprint on measurable transport properties. These
ballistic rings represent a solid-state realization of a two-slit
experiment—an electron entering the ring can propagate in two
possible directions (clockwise and counterclockwise) where
superpositions of corresponding quantum states are sensitive to
the acquired topological phases [15] in magnetic (Aharonov–
Bohm (AB) effect) or electric (Aharonov–Casher (AC) effect
for particles with spin) external field whose variation generates
an oscillatory pattern of the ring conductance [8]. Many recent
papers proposed the mesoscopic quantum ring, as a device able
to select a spin polarized current, focusing on the role of the α

coupling [16–21].

2. The SO coupling

The SO interaction is generally described by the Hamilto-
nian [22]

ĤSO = −λ2
0

h̄
eE(r)

[
σ̂ × p̂

]
. (1)

Here E(r) is the electric field, m0 the electron mass in
vacuum, σ̂ are the Pauli matrices, p̂ is the canonical momentum
operator, r is a three-dimensional position vector and λ2

0 is the
SO coupling parameter having a dimension of length squared.
In materials m0 and λ0 are replaced by their effective values
m∗ and λ. Next, we neglect the α term of SO coupling and

adapt the general form to the strictly 2D case, where the degree
of freedom for the motion in the z direction is frozen out
(i.e. with a mean value 〈pz〉 = 0 in the ground state, for
the potential well in the z direction), and the potential energy
depends only on x and y coordinates. Then ĤSO takes the
following form [23]:

Ĥ β

SO = λ2

h̄
σ̂z

[∇Vc(r) × p̂
]

z
, (2)

where Vc(r) is the 2D confining potential.

3. SO interaction in quasi-one-dimensional systems

The basic building block of our device is the ballistic one-
dimensional wire i.e. a nanometric solid-state device in which
the transverse motion (along x) is quantized into discrete
modes, and the longitudinal motion (y direction) is free. In
this case electrons are envisioned as propagating freely down
a clean narrow pipe and electronic transport with no scattering
can occur.

In line with [24], the lateral confining potential of a QW,
Vc(x), is approximated by a parabola Vc(r) = m∗

2 ω2x2. The
quantity ω controls the strength (curvature) of the confining
potential while the in-plane electric field eEc(r) = −∇Vc(r)
is directed along the transverse direction. For the parabolic
confining potential Ĥ β

SO is

Ĥ β

SO = β

h̄

x

lω

(
σ̂ × p̂

)
x

= iβ
x

lω
σz

∂

∂y
. (3)

Here lω = (h̄/m∗ω)1/2 is the typical spatial scale associated
with the potential Vc and β ≡ λ2m∗ω2lω. It follows that
the effect of the β-SOC is analogous to the one of a uniform
effective field,

Beff = λ2

h̄

m∗2ω2c

e
≡ β

h̄lω

m∗c

e
, (4)

orthogonal to the 2DEG directed upwards or downwards,
according to the spin polarization along the z direction.

Next, we introduce the effective cyclotron frequency ωc =
β

h̄lω
(ωc/ω = λ2/ lω), the related frequency ω2

0 = ω2 − ω2
c and

the total frequency ωT = √
ω2 + ω2

c , thus

Ĥ0 + Ĥ β

SO = ω2
0

ω2
T

p2
y

2m∗ + p2
x

2m∗ + m∗ω2
T

2
(x − x0)

2, (5)

where x0 = s ωc py

ω2
Tm∗ , s = ±1, corresponds to the spin

polarization along the z direction. Hence we can conclude
that 4-split channels are present for a fixed Fermi energy, εF,
corresponding to ±py and sz = ±1.

4. Q1D ring

Here we outline briefly the derivation of the Hamiltonian
describing the motion of an electron in a realistic Q1D
ring [25]. We consider the 2DEG in the xy plane; then we
introduce a radial potential Vc(r), so that the electrons are

2
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confined to move in a ring. To be specific, we use a parabolic
radial confining potential Vc(r) = 1

2 m∗ω2
d(r − R0)

2, for which
the radial width of the wavefunction is given by lω. Due to the
circular symmetry of the problem, it is natural to rewrite the
full single-electron Hamiltonian in polar coordinates [25]

H = − h̄2

2m∗

[
∂2

∂r 2
+ 1

r

∂

∂r
− 1

r 2

(
i

∂

∂ϕ

)2
]

+ Vc(r)

+ λ2

h̄
e

Er (r)

r

(
−ih̄

∂

∂ϕ

)
σz, (6)

because the electric field has just the radial component.
It follows that Lz = −ih̄ ∂

∂ϕ
and σz commute with the

Hamiltonian Ĥ and the corresponding eigenvalues are ±h̄μ

for Lz and ±1 for σz .
In the case of a thin ring, i.e., when the radius R0 of the

ring is much larger than the radial width of the wavefunction,
it is convenient to project the Hamiltonian on the eigenstates of

H0 = − h̄2

2m∗

[
∂2

∂r 2
+ 1

r

∂

∂r

]
+ Vc(r).

Next, we assume lω/R0 � 1 and neglect contributions of order
lω/R0 to H0 and to the centrifugal term,

Hc � − h̄2

2m∗ R2
0

∂2

∂ϕ2
= h̄ωR

∂2

∂ϕ2
.

After some tedious calculations [26] we are able to obtain
the energy spectrum as

εn,μ,s ∼ h̄
√

ω2 + 2ωcωRμs(n + 1
2 ) + h̄ωRμ2. (7)

The corresponding bandstructure is shown in figure 2. It
follows that for fixed values of the Fermi energy, εF, and of
the band n there are 4 different eigenstates �s

n,μ i.e. particles
with fixed Fermi energy εF can go through the ring with
four different wavenumbers ±μ±,s , depending on spin (s)
and direction of motion (±). Moreover the presence of
a nonvanishing β term implies an edge localization of
the currents depending on the electron spins, also giving
the presence of two localized spin currents with opposite
chiralities [12].

The presence of a spin splitting is the basis of the
interference phenomena in the transport through the ring. By
solving εμ,n = εF we can obtain the values of μ±,s that are not
required to be integer, whereas μ+,↑ = μ−,↓ and μ−,↑ = μ+,↓,
because of the symmetry of the system. Thus, a momentum
difference arises

μ = μ+,↑ − μ−,↑ = μ−,↓ − μ+,↓ ∼ 2
ωc

ω
.

5. Quantum transport of spin currents in
four-terminal rings

The charge currents in mesoscopic structures attached to
many leads are described by the multiprobe Landauer–Büttiker
formulas [27]

Ip =
∑

q �=p

G pq(Vp − Vq), (8)

Figure 2. Bandstructure with and without the effects of the SO
coupling. Notice the splitting: for each value of the Fermi energy εF

and for a fixed band n, there are four different eigenvalues. This
spin-dependent splitting in the energy allows for the interference
phenomena.

while the analogous formulas for the spin currents in the leads
are straightforwardly extracted from them [28, 29]

I s
p = h̄

2e

∑

q �=p

(Gout
qp Vp − G in

pq Vq), (9)

where G in
pq = G↑↑

pq + G↑↓
pq − G↓↑

pq − G↓↓
pq and Gout

qp = G↑↑
qp +

G↓↑
qp − G↑↓

qp − G↓↓
qp . The commutation relation [H, σz] in our

system implies G↑↓
pq = G↓↑

pq = 0 so that G in
pq = G↑↑

pq − G↓↓
pq .

The conductance coefficients are related to the transmission
matrices tpq between the leads p and q through the Landauer-
type formula Gαα′

pq = e2

h

∑Mleads
i, j=1 |tpq

i j,αα′ |2, where |tpq
i j,αα′ |2 is

the probability for a spin-α′ electron incident in lead q to be
transmitted to lead p as a spin-α electron and i, j label the
transverse propagating modes (i.e. conducting channels) in the
leads.

Since the total charge current Ip = I ↑
p + I ↓

p depends only
on the voltage difference between the leads in figure 1, we set
one of them to zero (e.g., V3 = 0 is chosen as the reference
potential) and apply the voltage V1 to the structure. Imposing
the requirement I2 = I4 = 0 for the voltage probes 2 and 4
allows us to get the voltages V2/V1 and V4/V1 by inverting
the multiprobe charge current formulas equation (8). Finally,
by solving equation (9) for I s

2 we obtain the most general
expression for the spin Hall conductance defined by [29]

GsH = h̄

2e

I ↑
2 − I ↓

2

V1 − V3

= h̄

2e

[
(Gout

12 + Gout
32 + Gout

42 )
V2

V1
− G in

42

V4

V1
− G in

21

]
.

(10)

This quantity is measured in units of the spin conductance
quantum e/4π . Moreover, the ballistic four-terminal ring in
figure 1 with no impurities has various geometrical symmetries
which, together with G pq = Gqp property, specify the
V2/V1 = V4/V1 ≡ 1/2 solution for the voltages of the
transverse leads, when the I2 = I4 = 0 condition is imposed
on their currents [29].

The symmetry of the device is reflected by the
transmission coefficients, so that T s,s

12 = T s,s
23 = T s,s

34 = T s,s
41 ,

3
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T s,s
14 = T s,s

43 = T s,s
32 = T s,s

21 and T s,s
13 = T s,s

31 . The
antisymmetric behavior due to the inversion of Beff according
the spin polarization gives T ↑↑

12 = T ↓↓
14 and T ↑↑

14 = T ↓↓
12 . It

follows that
GsH = e

4π
2
(

T ↑↑
12 − T ↑↑

14

)
, (11)

while the corresponding longitudinal charge conductance turns
out as

GL = h̄

2e

I3

V1
= h̄

2e

[
G31 + G32

V2

V1
+ G34

V4

V1

]

= h̄

2e

(

T ↑↑
13 + T ↑↑

12 + T ↑↑
14

2

)

. (12)

It is now clear that the nonvanishing GsH stems from the
symmetry breaking between the leads 2 and 4 due to the
effective magnetic field.

6. Theoretical treatment of the scattering

The study of the conductance is now reduced to the one
of finding the transmission coefficients. We approach
this scattering problem by using the quantum waveguide
theory [30] for the strictly 1D ring and assume the wavevector
of the incident propagating electrons in the leads as k ∼ μ/R0.
This hypothesis corresponds to assuming the leads as QWs
of the same width of the ring. First of all, we introduce the
wavefunctions in each of the eight different regions, then we
use the Griffith boundary condition [31], which states that
the wavefunction is continuous and that the current density is
conserved at each intersection between a lead and the ring.

Thus we obtain the transmission coefficients and the
related spin conductance GsH reported in figures 3 and 4.

7. Discussion

In this paper we found that a nonvanishing spin Hall
conductance can be measured for a four lead ballistic ring just
in the presence of the β term of the SO coupling. As we
showed in figure 3, some peaks in the pure spin Hall current,
IsH, are present near the measurable peaks in the longitudinal
charge conductance. The presence of a significant IsH is
confirmed by the spin spitting of the peaks in the GL, as a
function of the Fermi energy. All of our calculations are limited
to the lowest subband but can be easily extended to the several
subband case.

The feasibility of a similar device obviously depends on
its size and on the materials. The fundamental theoretical
parameter discussed above is the momentum difference, μ

proportional to the ratio ωc/ω, corresponding to λ2/ l2
ω =

ωeff/ω, i.e. the ratio between a material dependent parameter
λ and a size dependent one lω (that can be assumed to be
a fraction of the real width, W , of the conducting channel).
The SO strengths have been theoretically evaluated for some
semiconductors compounds. In a QW (W ∼ 100) patterned in
InGaAs/InP heterostructures, where λ2 takes values between
0.5 and 1.5 nm2, it gives h̄ωc ∼ 10−6–10−4 eV, corresponding
to ωc/ω ∼ 10−4–10−3 as in InSb, where λ2 ∼ 500 Å

2
.

For GaAs heterostructures, λ2 is one order of magnitude

y
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Figure 3. The spin Hall conductance Gz
sH (corresponding to the

detection of the z-component of the pure spin current I s
2 ) for the 1D

ring (R = 10lω top panel and R = 20lω bottom panel) attached to
four single-channel leads, as a function of the Fermi energy εF

(bottom panel). We can observe that the presence of peaks in the spin
conductance is related to dips in the longitudinal charge transport
(upper panel). These dips in GL should correspond to the values of
the Fermi energy which give integer angular momenta (μ = 1), but
the presence of spin splitting doubles the peak because of the
symmetry breaking. By comparing the top panel and the bottom
panel, it is clear that the width of the peaks strongly depends on the
radius of the ring.
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Figure 4. The spin Hall conductance Gz
sH for the 1D ring (R = 10lω)

attached to four single-channel leads, as a function of dimensionless
SO coupling ωc/ω.

smaller (∼4.4 Å
2
) than in InGaAs/InP, whereas for HgTe based

heterostructures it can be more than three times as large [32].
However, the lithographical width of a wire defined in a 2DEG
can be as small as 20 nm [33]; thus we can realistically assume
that ωc/ω runs from 1 × 10−6 to 1 × 10−1.3
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